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Abstract 19 

The formation of secondary organic aerosol (SOA) has been widely studied in the 20 

presence of dry seed particles at low relative humidity (RH). At higher RH, seed 21 

particles can exist as dry or wet particles. Here, we investigated the formation of SOA 22 

from the photooxidation of toluene using an oxidation flow reactor under a range of 23 

OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH 24 

of 68%. At an OH exposure of 4.66×1010 molecules cm-3 s, the ratio of the SOA yield 25 

on wet AS seeds to that on dry AS seeds was 1.31±0.02. However, this ratio decreased 26 

to 1.01±0.01 at an OH exposure of 5.28×1011 molecules cm-3 s. The decrease in the 27 

ratios of SOA yields as the increase of OH exposure may be due to the early 28 

deliquescence of initially dry AS seeds after coated by highly oxidized toluene-derived 29 

SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake 30 

of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid 31 

water (ALW) soon after a large fraction of SOA formed and the SOA yield and ALW 32 

approached those of the initially wet AS seeds as OH exposure and ALW increased. 33 

However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry 34 

AS seeds was observed at all levels of OH exposure. The difference in mass fractions 35 

of m/z 29, 43 and 44 of SOA mass spectra indicated that SOA formed on initially wet 36 

seeds may be enriched in earlier-generation products containing carbonyl functional 37 

groups at low OH exposures and later-generation products containing acidic functional 38 

groups at high exposures. Our results suggest that AS dry seeds soon turn to at least 39 

partially deliquesced particles during SOA formation and more studies on the interplay 40 
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of SOA formation and ALW are warranted.  41 
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1. Introduction 42 

Secondary organic aerosol (SOA) is an important component of atmospheric particulate 43 

matter, which influences air quality, climate and human health (Hallquist et al., 2009). 44 

SOA is mainly formed via the oxidation of volatile organic compounds (VOCs), 45 

followed by partitioning to the condensed phase. Traditional atmospheric chemical 46 

transport models largely underestimate the levels of SOA (de Gouw et al., 2005; 47 

Volkamer et al., 2006; Hodzic et al., 2010) and the degree of oxidation (Rudich et al., 48 

2007; Ng et al., 2010). SOA yields in traditional atmospheric chemical transport models 49 

are obtained from smog chamber experiments using dry seed particles (Barsanti et al., 50 

2013; Mahmud and Barsanti, 2013) under dry conditions. Yet, atmospheric relative 51 

humidity is often sufficiently high that aerosols often exist as wet aerosols, containing 52 

a large amount of aerosol liquid water (ALW) (Liao and Seinfeld, 2005; Lee and Adams, 53 

2010; Guo et al., 2015; Nguyen et al., 2016). The presence of ALW in wet aerosols may 54 

enhance SOA formation by facilitating the partitioning of semivolatile organic 55 

compounds and the uptake of water-soluble gases through aqueous-phase reactions 56 

(Hennigan et al., 2008; Lim et al., 2010; Ervens et al., 2011; Lee et al., 2011; Sareen et 57 

al., 2017). ALW may also promote photodegradation of dissolved SOA (Romonosky et 58 

al., 2014). Therefore, SOA formation under atmospherically relevant relative humidity 59 

needs to be better constrained in atmospheric chemical transport models. 60 

Aromatic hydrocarbons constitute a large fraction of the total non-methane 61 

hydrocarbons in the urban atmosphere (Calvert et al., 2002) and account for a 62 

significant fraction of SOA in urban areas (Ding et al., 2012; Zhao et al., 2017). Toluene 63 
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is the most abundant aromatic hydrocarbon (Calvert et al., 2002; Zhang et al., 2016) 64 

and SOA yields from the photooxidation of toluene on dry or wet ammonium sulfate 65 

(AS) seeds has been studied by varying the RH in smog chambers. Kamens et al. (2011) 66 

observed higher yields of SOA from toluene at higher RHs. They attributed this increase 67 

to the initially wet seed particles. On the other hand, Edney et al. (2000) reported that 68 

wet seeds had no effect on the SOA yields of toluene compared with dry seeds. In these 69 

studies, different RHs used for dry and wet seeds experiments may influence the gas-70 

phase chemistry and complicate the comparison of SOA formation.  71 

SOA formation on initially dry and wet AS seeds has been compared using 72 

oxidation flow reactors at same RHs (Wong et al., 2015; Faust et al., 2017). Faust et al. 73 

(2017) found a 19% enhancement in the SOA yield of toluene on wet AS seeds over 74 

that on dry AS seeds at 70% RH. However, at such high RH, the initially dry and water-75 

free AS seed particles can uptake water upon SOA formation because SOA themselves 76 

can be hygroscopic and they can also lower the deliquescence RH of the AS seeds 77 

(Takahama et al., 2007; Smith et al., 2011, 2012, 2013). The potential influence of SOA 78 

formation on the physical state of the initially dry seeds as well as and the overall water 79 

uptake by the aged particles was not explicitly discussed. In addition, the hydroxyl 80 

radicals (OH) exposure in their study was approximately 2×1011 molecules cm-3 s, 81 

equivalent to about 1.5 days of oxidation in the atmosphere assuming an ambient OH 82 

concentration of 1.5×106 molecules cm-3 (Mao et al., 2009). Atmospheric particles can 83 

undergo oxidation for as long as 1-2 weeks (Balkanski et al., 1993).  84 

In this study, SOA formation from the photooxidation of toluene was investigated 85 
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in an oxidation flow reactor at an RH of 68% under a wide range of OH exposures using 86 

initially wet or dry AS seed particles. The yields and composition of SOA as well as the 87 

estimated ALW contents for the initially wet and dry seeds are compared. We found 88 

that as OH exposure increased, the SOA yield and ALW of the initially dry seeds 89 

approached those of the initially wet seeds while the wet seeds yielded SOA of a higher 90 

degree of oxidation than the dry seeds did at all exposure levels.   91 

2. Materials and methods  92 

2.1 Generation of seed particles 93 

A schematic of the experimental setup is shown in Fig. 1. AS seed particles were 94 

generated from an aqueous AS solution (Sigma-Aldrich) using an atomizer (TSI 3076, 95 

TSI Inc., USA). In experiments using dry seeds, the atomized aqueous AS droplets 96 

passed through a silica gel diffusion dryer so that the RH was reduced to less than 30% 97 

at which AS effloresced, while in experiments using wet seeds, they bypassed the 98 

diffusion dryer. The dry or wet seed particles then entered and mixed with a humidified 99 

N2/O2/O3 flow in an oxidation flow reactor. The RH in the flow reactor was at 68%, 100 

which lies between the efflorescence and deliquescence RH of AS (Seinfeld and Pandis, 101 

2006), so that the seed particles remained in their original phase with the wet particles 102 

containing ~18.6 µg m-3 ALW and the dry particles anhydrous before reaction started. 103 

Hereafter, the experiments using initially wet and dry AS seed particles are simplified 104 

as wet and dry AS seeds, respectively. “Wet” and “dry” refer to the initial state of the 105 

seed particles before SOA formation. 106 

When atomizing a given AS solution, the diameter of wet AS droplets is much 107 
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larger than that of dry AS particles due to the water uptake of AS (Chan et al., 1992), 108 

resulting in a larger surface area of seed particles. Previous studies have demonstrated 109 

that a large surface area of seed particles may increase the SOA yields by reducing the 110 

wall loss of organic vapors (Matsunaga and Ziemman, 2010, Zhang et al., 2014, 2015; 111 

Huang et al., 2016; Krechmer et al., 2016). To obtain seed particles of comparable 112 

surface areas, we atomized 0.013 mM and 0.015 mM of the AS solution for wet and 113 

dry AS seeds, respectively. As shown in Fig. S1, the surface area distribution of wet AS 114 

seeds was similar to that of dry AS seeds. Because of the difference in AS concentration 115 

between the stock solutions used, wet AS seeds had a mean diameter of 88 nm and were 116 

slightly smaller than dry AS seeds which had a mean diameter of 102 nm. The total 117 

surface area of wet AS seeds was 21% larger than that of dry AS seeds. The mass 118 

loading of wet and dry AS seeds was 31.0 and 24.2 µg m-3, respectively.  119 

2.2 Oxidation flow reactor 120 

SOA formation from the photooxidation of toluene on initially dry or wet seeds was 121 

investigated in a potential aerosol mass (PAM) oxidation flow reactor, which has been 122 

described in detail elsewhere (Kang et al., 2007, 2011; Lambe et al., 2011a, 2015; Liu 123 

et al., 2017). Briefly, a PAM chamber is a continuous oxidation flow reactor using high 124 

and controlled levels of oxidants to oxidize gaseous precursors to produce SOA. The 125 

chamber used in this study had a volume of approximately 19 L (length 60 cm, diameter 126 

20 cm). The total flow rate in the PAM chamber was set at 3 L min-1 using mass flow 127 

controllers, resulting in a residence time of approximately 380 s. The RH and 128 

temperature of the PAM outflow were measured continuously (HMP 110, Vaisala Inc, 129 
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Finland) and stabilized at approximately 68% and 20 ºC, respectively. High OH 130 

exposures were realized through the photolysis of ozone irradiated by a UV lamp (λ = 131 

254 nm) in the presence of water vapor. Ozone was produced by an ozone generator 132 

(1000BT-12, ENALY, Japan) via the irradiation of pure O2. The OH concentration was 133 

adjusted by varying the concentration of ozone in the PAM chamber from 0.4 ppm to 134 

4.3 ppm. The corresponding upper limit of OH exposure at these operating conditions 135 

ranged from 4.66×1010 molecules cm-3 s to 5.28×1011 molecules cm-3 s, equivalent to 136 

0.36 to 4.08 days of atmospheric oxidation assuming an ambient OH concentration of 137 

1.5×106 molecules cm-3 (Mao et al., 2009). The addition of toluene may reduce the OH 138 

exposure. The upper limit of OH exposure was determined by measuring the decay of 139 

SO2 (Model T100, TAPI Inc., USA) in the absence of toluene, following procedures 140 

described elsewhere (Kang et al., 2007; Lambe et al., 2011a). Peng et al. (2016) found 141 

that non-OH chemistry, including photolysis at λ = 254 nm and reactions with O(1D), 142 

O(3P) and O3, may play an important role in oxidation flow reactors. In this study, the 143 

PAM reactor was operated at water vapor mixing ratios above 0.5% and external OH 144 

reactivity below 20 s-1. Non-OH chemistry is expected to play a negligible role under 145 

these conditions (Peng et al., 2016). 146 

Before and after each experiment, the PAM reactor was cleaned under an OH 147 

exposure of ~1×1012 molecules cm-3 s until the mass concentration of background 148 

particles dropped below 3 μg m-3. After characterizing dry or wet AS seed particles for 149 

half an hour, the UV lamp was turned on to oxidize the background gases at five 150 

different OH levels to measure the concentrations of background organics. A toluene 151 
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mixture (29.6 ppm in nitrogen) with a flow rate of 0.013 L min-1 was then introduced 152 

to initiate SOA formation. The initial concentration of toluene in the PAM reactor was 153 

approximately 138 ppb. SOA was measured for at least an hour at each of the five OH 154 

levels.  155 

2.3 Characterization of non-refractory components 156 

The AS/SOA mixed particles were characterized for the chemical composition of non-157 

refractory components including organics, sulfate and ammonium as well as the 158 

elemental ratios of organics using a high-resolution time-of-flight aerosol mass 159 

spectrometer (hereafter AMS, Aerodyne Research Incorporated, USA) (DeCarlo et al., 160 

2006). The instrument was operated in the high sensitivity V-mode and the high 161 

resolution W-mode alternating every one minute. The toolkit Squirrel 1.57I and Pika 162 

1.16I were used to analyze the AMS data. The molar ratios of hydrogen to carbon (H:C) 163 

and oxygen to carbon (O:C) were determined using the Aiken method (Aiken et al., 164 

2007, 2008). The ionization efficiency of the AMS was calibrated using 300 nm 165 

ammonium nitrate particles. The particle-free matrix air, obtained by passing the air 166 

flow from the PAM reactor through a HEPA filter, was measured for at least 20 min 167 

before each experiment to determine the signals from major gases.  168 

The collection efficiency (CE) of an AMS is dependent on the chemical 169 

composition and acidity as well as the phase state of particles (Matthew et al., 2008; 170 

Middlebrook et al., 2012). Matthew et al. (2008) found that the CE for solid particles 171 

thickly coated with liquid organics was 100%. In this study, experiments were 172 

conducted at an RH of 68%, exceeding the RH threshold for the semisolid-to-liquid 173 
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phase transition for toluene-derived SOA (Bateman et al., 2015; Song et al., 2016). A 174 

CE of 1 was used for processing all AMS data since the concentration of sulfate 175 

measured with the AMS varied by less than 5% of the average mass of sulfate after 176 

coated by SOA for both wet and dry AS seeds conditions. For the quantification of 177 

SOA, the contribution from background organic aerosols was subtracted from the total 178 

organic aerosols. The ratio of SOA mass to background organic mass ranged from 7 to 179 

59, indicating that the contribution from background organics was negligible. Aerosol 180 

particles typically pass through a silica gel diffusion dryer to remove ALW before they 181 

are measured by AMS. However, this may lead to some losses of semivolatile organics 182 

through reversible partitioning (Wong et al., 2015; Faust et al., 2016). In this study, the 183 

AS/SOA mixed particles stream passed through and bypassed a diffusion dryer 184 

alternately before they were measured by AMS. Overall less than 8% of SOA were lost 185 

for wet and dry AS seeds after passing the diffusion dryer (Fig. S2), possibly due to 186 

reversible partitioning of the SVOCs. In this paper, the data reported are those 187 

bypassing the diffusion dryer. 188 

A scanning mobility particle sizer (SMPS, TSI Incorporated, USA, classifier model 189 

3082, CPC model 3775) was used to measure particle number concentrations and size 190 

distributions. Particle size ranged from 15 nm to 661 nm.  191 

To evaluate the influence of seed surface area on SOA formation, we conducted 192 

another experiment at OH exposure of 4.66×1010 molecules cm-3 s with 50% of the seed 193 

surface area used in the wet AS experiment. The difference in SOA concentration was 194 

approximately 1% between these two experiments. Hence the 20% difference in seed 195 
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surface area as well as the difference in mass loadings between wet and dry AS particles 196 

cannot account for the difference in SOA yield to be discussed below.  197 

2.4 Estimation of aerosol liquid water (ALW) content  198 

The ALW content of the initially dry AS was zero. However, as reactions proceed, SOA 199 

themselves can uptake water and also lower the deliquescence RH of AS, leading to 200 

water uptake by AS and some fractions of AS in aqueous phase. The ALW contents of 201 

AS (ALWAS) and toluene-derived SOA (ALWSOA) were estimated from the following 202 

equations (Kreidenweis et al., 2008): 203 

w

w

w
ASASAS fVALW 









1
                     (1) 204 

w

w

w
SOASOASOA VALW 









1
                     (2) 205 

where VAS and VSOA represent the volume concentrations of dry AS and SOA particles, 206 

κAS is the hygroscopicity parameter of AS particles obtained from Kreidenweis et al. 207 

(2008), κSOA is the hygroscopicity parameter of toluene-derived SOA calculated using 208 

the linear correlation between κSOA and the O:C ratios of SOA proposed by Lambe et al. 209 

(2011b), the term f is the fraction of AS particles that dissolved, αw is the water activity 210 

and ρw is the density of water (1.0 g cm-3). Here, αw was assumed to be equivalent to 211 

RH/100 for simplicity. The volume concentrations of dry AS and SOA particles were 212 

estimated from the measured mass concentration of AS and SOA assuming their 213 

respective particle densities to be 1.77 g cm-3 and 1.4 g cm-3 (Ng et al., 2007).  214 

For the initially wet AS seeds, all AS particles were completely aqueous and 215 

therefore f = 1. For the initially dry AS seeds, before reactions, the AS particles were 216 
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completely dry and f = 0. After reactions, the AS particles became partially or entirely 217 

deliquesced upon the formation of toluene-derived SOA. The dissolved fraction of AS 218 

particles was regulated by the liquidus curve of the deliquescence relative humidity 219 

(DRH(ε)) of AS particles coated with toluene-derived SOA (Smith et al., 2013): 220 

 
 

















D

D

D

D

for

for
f








1

1

1

                 (3) 221 

The term ε is the volume fraction of SOA. The term εD, representing the volume fraction 222 

of organics at which the mixture of SOA and AS particles deliquesced at an RH of 68%, 223 

was estimated to be 0.75 based on the liquidus curve.  224 

3. Results and discussion  225 

3.1 SOA yields 226 

Figure 2a shows SOA yields from the photooxidation of toluene on initially wet and 227 

dry AS seed particles as a function of OH exposure. The SOA yield was calculated as 228 

the SOA mass divided by the mass of reacted toluene. The mass of reacted toluene was 229 

calculated from the OH exposure and the rate constant of the reaction between toluene 230 

and OH (Atkinson and Arey, 2003). The uncertainty in the SOA yields fully reflected 231 

the uncertainty in the calculation of the SOA mass. In both cases, SOA yields first 232 

exhibited an increase, followed by a decrease as the level of OH exposure increased. 233 

This trend may be due to the transition of functionalization reactions to fragmentation 234 

ones (Kroll et al., 2009; Lambe et al., 2011a). The SOA yields for dry and wet AS seeds 235 

were 0.18–0.31 and 0.22–0.36, respectively, significantly higher than the value of 236 

0.0059 observed in an oxidation flow reactor under comparable conditions (Faust et al., 237 
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2017) and the value of 0.09 obtained in another PAM chamber at 30% RH in the 238 

absence of seed particles (Kang et al., 2007). Faust et al. (2017) attributed their 239 

significantly lower yields than typical literature values of 0.09–0.30 (Lambe et al., 240 

2011a; Ng et al., 2007) to the wall loss of particles and the fragmentation of organics in 241 

their flow reactor. On the other hand, the SOA yields we obtained are lower than 0.30–242 

0.37 from smog chamber experiments conducted at a similar temperature, SOA mass 243 

loading and OH exposure but a lower RH with dry AS seeds (Ng et al., 2007; 244 

Hildebrandt et al., 2009). Note that the wall loss of particles was not corrected in this 245 

study, so the SOA yields may be underestimated. As wet and dry AS seeds in this study 246 

had similar particle number size distributions, the wall loss of particles would not affect 247 

the comparison of SOA yield between wet and dry AS seeds. 248 

As shown in Fig. 2a, a higher SOA yield was observed for wet AS seeds than for 249 

dry AS seeds at the same OH exposure and the difference in SOA yield decreased as 250 

the OH exposure increased. The ratio of SOA yields on wet AS seeds to those on dry 251 

AS seeds was 1.31±0.02 at an OH exposure of 4.66×1010 molecules cm-3 s but 252 

decreased to 1.01±0.01 when the OH exposure was increased to 5.28×1011 molecules 253 

cm-3 s (Fig. 2b). These ratios are comparable to the 1.19±0.05 observed by Faust et al. 254 

(2017) at an OH exposure of approximately 2.0×1011 molecules cm-3 s.   255 

The formation of SOA on initially dry AS particles may alter the deliquescence 256 

relative humidity (DRH) of AS particles. Smith et al. (2013) found that when coated 257 

with toluene-derived SOA, the DRH of AS particles decreased from 80% to 58% as the 258 

organic volume fraction increased from 0 to 0.8. Therefore, coating AS particles with 259 
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toluene-derived SOA can change the physical state of initially dry AS seeds and 260 

increase the content of ALWAS, dry. As shown in Fig. 3a, after reactions, the mass 261 

concentrations of ALWtot (= ALWSOA + ALWAS) and ALWSOA increased for both wet 262 

and dry seeds as the OH exposure increased. The uncertainties for ALWSOA and ALWAS 263 

were 22% and less than 3%, respectively. They reflect the uncertainties in κ and volume 264 

concentrations of AS and SOA. The increase in ALWtot, wet was due to the increase in 265 

ALWSOA, wet while the increase in ALWtot, dry was driven by the increase in ALWAS, dry at 266 

lower OH exposure and by ALWSOA, dry at higher OH exposures. At OH exposure of 267 

4.66×1010 molecules cm-3 s, ALWAS, dry increased from 0 to 6.2 µg m-3 after reactions 268 

due to the partial deliquescence (f=0.43) of the originally dry AS particles after SOA 269 

formation. The difference in ALWAS, dry and ALWAS, wet narrowed and the ALWtotal of 270 

initially dry AS seeds partially resembled those of the wet ones. At OH exposure 271 

between 1.66×1011 and 5.28×1011 molecules cm-3 s, the total final organic volume 272 

fraction increased to approximately 0.8 and the initially dry AS particles entirely 273 

deliquesced after reactions. Based on the reported SOA yield, initial toluene 274 

concentration, OH exposure and assumed concentrations of AS seeds (~10-40 µg m-3) 275 

in Faust et al. (2017), we estimated that an upper limit of 48% of the initially dry AS 276 

seeds has deliquesced in their study. Similar to this study, SOA coatings on seed 277 

particles may change the physical state of initially dry seeds and lower the difference 278 

of SOA yields between initially dry and wet seeds experiments.           279 

3.2 Chemical composition of SOA 280 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1008
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 8 November 2017
c© Author(s) 2017. CC BY 4.0 License.



15 
 

Figure 4 shows the high-resolution mass spectra of SOA for initially wet and dry AS 281 

seeds at OH exposures of 4.66×1010 molecules cm-3 s and 5.28×1011 molecules cm-3 s. 282 

For both types of AS seeds, at an OH exposure of 4.66×1010 molecules cm-3 s, the most 283 

prominent peaks were m/z 29 and 43, followed by m/z 28 and 44. m/z 29 was dominated 284 

by ion CHO+, a tracer for alcohols and aldehydes (Lee et al., 2012). The m/z 28 and m/z 285 

44 signals, respectively dominated by CO+ and CO2
+, are tracers for organic acids (Ng 286 

et al., 2010). At the OH exposure of 5.28×1011 molecules cm-3 s, the dominant peaks 287 

were m/z 28 and 44, followed by m/z 29 and 43. The increase of mass fractions of the 288 

oxygen-containing ions in the SOA mass spectra at a relatively high OH exposure 289 

suggests the formation of more oxidized organic aerosols. Furthermore, ions with m/z > 290 

80 accounted for a negligible fraction of total SOA, suggesting that oligomerization 291 

might not be important in these experiments. On the basis of the mass fraction of ions, 292 

Fig. S3 shows that as OH exposure increased, the difference (wet minus dry) in the 293 

spectra of toluene-derived SOA changed from positive in m/z 29 (CHO+) and m/z 43 294 

(C2H3O
+) to m/z 28 (CO+) and m/z 44 (CO2

+). The increase in OH exposure resulted in 295 

a change from more alcohols or aldehydes to more organic acids in the wet seeded case 296 

when compared to the dry seeded case.  297 

Fragments derived from the AMS data have been extensively used to infer the bulk 298 

compositions and evolution of organic aerosols (Zhang et al., 2005; Ng et al., 2010; 299 

Heald et al., 2010). Here we used the approach of Ng et al. (2010) and plotted the 300 

fractions of the total organic signal at m/z 43 (f43) vs. m/z 44 (f44) as well as the triangle 301 

based on the analysis of ambient AMS data (Fig. 5). Ng et al. (2010) proposed that 302 
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aging would cause f43 and f44 to converge toward the triangle apex (f43 = 0.02, f44 = 0.30). 303 

For both wet and dry AS seeds, f43 first increased and then decreased with the increase 304 

of OH exposure, while f44 increased all the time. This reversing trend of f43 was the 305 

result of the increase and subsequent decrease in C2H3O
+ (Fig. S4), an indicator of 306 

products containing carbonyl functional groups. It was also observed for SOA formed 307 

from other precursors such as alkanes and naphthalene (Lambe et al., 2011b). Before 308 

the decrease in f43, SOA formed on wet AS seeds had higher f43 and similar f44 to SOA 309 

formed on dry AS seeds at the same OH exposure. As OH exposure increased, SOA 310 

formed on wet AS seeds had higher f44 and lower f43 than SOA formed on dry AS seeds. 311 

The f43-f44 plot supports our earlier assertion that as OH exposure increased, the reaction 312 

products changed from earlier-generation products containing carbonyl functional 313 

groups to later-generation products containing acidic functional groups. In addition, as 314 

OH exposure increased, SOA formed on wet AS seeds initially had more earlier-315 

generation products but later had more acidic later-generation products than SOA 316 

formed on dry AS seeds, likely due to the enhanced partitioning of these products on 317 

initially wet AS seeds and/or enhanced uptake of water-soluble gases through aqueous 318 

phase reactions.   319 

Figure 6 shows the changes in H:C and O:C ratios as a function of OH exposure in 320 

a Van Krevelen diagram (Heald et al., 2010). The standard deviations for H:C and O:C 321 

values were both less than 0.01. The O:C ratios for dry and wet AS seeds were in the 322 

ranges of 0.59–0.89 and 0.63–0.95, respectively. At the same OH exposure, SOA on 323 

wet AS seeds had both higher O:C ratios and estimated average carbon oxidation state 324 
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(OSC) (OSC ≈ 2×O:C – H:C) (Kroll et al., 2011) than dry AS seeds had. Fig. 6 also 325 

shows some of the identified SOA products from the photoxidation of toluene (Bloss et 326 

al., 2005; Hamilton et al., 2005; Sato et al., 2007). The elevated OSc (exceeding 0.5) 327 

could only be due to the formation of highly oxgenerated small acids such as pyruvic 328 

acid (OSC = 0.67), glycolic acid (OSC = 1), formic acid (OSC = 2), oxalic acid (OSC = 329 

3), malonic acid (OSC = 1.33) and glyoxylic acid (OSC = 2). Small acids may be 330 

important products of toluene-derived SOA at high OH exposures. Fisseha et al. (2004) 331 

found that small organic acids accounted for 20–45% of SOA from the photooxidation 332 

of 1,3,5-trimethylbenzene. The higher OSc at high OH exposures for wet AS seeds 333 

might suggest that these small acids were more abundant, likely due to their enhanced 334 

retention in the presence of ALW and/or the more efficient uptake of OH radicals by 335 

wet AS seeds and further oxidation reactions in aqueous phase (Ruehl et al., 2013). The 336 

change in the slope of H:C vs O:C is consistent with the earlier analysis that the 337 

mechanism of SOA formation changed from functionalization dominated by the 338 

addition of alcohol/peroxide (Heald et al., 2010; Ng et al., 2011) at low exposures to 339 

the addition of both acid and alcohol/peroxide functional groups without fragmentation, 340 

and/or the addition of acid groups with fragmentation at high exposures.            341 

3.3 Atmospheric implications 342 

In this work, yields and composition of SOA formed from the photooxidation of toluene 343 

on initially wet and dry AS seeds were compared over a wide range of OH exposures, 344 

covering the transition from functionalization reactions to fragmentation reactions. We 345 

found that the ratio of SOA yield on wet AS seeds to that on dry AS seeds decreased 346 
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from 1.31 to 1.01 as the OH exposure increased from 4.66×1010 to 5.28×1011 molecules 347 

cm-3 s. This decrease coincides with the decrease of differences in ALW between the 348 

wet and dry cases, which may be due to water uptake by SOA as well as the early 349 

deliquescence of dry AS particles as a result of SOA formation.    350 

In addition to relatively higher SOA yields, higher O:C and OSc of SOA derived 351 

from the photooxidation of toluene were also observed on initially wet AS seeds. 352 

Particularly, the O:C in the presence of initially wet AS seeds could be as high as 0.95. 353 

Chen et al. (2015) observed large gaps between laboratory and ambient measured O:C 354 

of OA and suggested that OA having a high O:C (> 0.6) was required to bridge these 355 

gaps. The multiphase oxidation of toluene in the presence of wet aerosols may be a 356 

pathway to contribute to this gap. However, the relative importance of such chemistry 357 

to the evolution of ambient OA remains unclear.   358 

Our results suggest that dry seeds would quickly turn to at least partially 359 

deliquesced particles upon SOA formation under moderate RH conditions. Since 360 

ambient RH is rarely at such low values that inorganic particles remain dry even after 361 

SOA formation, more laboratory and field studies are needed to elucidate the formation 362 

and evolution of OA in wet aerosols.   363 
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 638 

 639 

Fig. 1. Schematic of the experimental setup. The aqueous ammonium sulfate (AS) seed 640 

particles either passed through a diffusion dryer so that the phase of the seed particles 641 

could be altered or bypassed the diffusion dryer. Either wet or dry AS served as seed 642 

particles for the experiments.   643 
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 644 

Fig. 2. (a) Yield of toluene-derived SOA formed on initially wet and dry AS as a 645 

function of OH exposure. (b) Ratio of SOA yields on initially wet AS to those on 646 

initially dry AS as a function of OH exposure.  647 
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 649 

Fig. 3. Mass concentration of ALW uptake by AS and toluene-derived SOA before 650 

(initial) and after reactions (final) for both initially wet and dry AS seeds. Adjoining 651 

bars for initially wet and dry seeds have same OH exposures.   652 
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 654 

Fig. 4. High-resolution mass spectra of toluene-derived SOA on initially wet and dry 655 

AS at an OH exposure of (a, b) 4.66×1010 molecules cm-3 s and (c, d) 5.28×1011 656 

molecules cm-3 s.  657 
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 658 

Fig. 5. Fractions of total organic signal at m/z 43 (f43) vs. m/z 44 (f44) from SOA data 659 

obtained in this study together with the triangle plot of Ng et al. (2010). Ambient SV–660 

OOA and LV–OOA regions are adapted from Ng et al. (2010). Data are colored 661 

according to the OH exposure.  662 
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 664 

Fig. 6. Van Krevelen diagram of SOA derived from the photooxidation of toluene on 665 

initially wet and dry AS seed particles. SOA data are colored according to the OH 666 

exposure. Products identified in toluene-derived SOA are shown in boxes (Bloss et al., 667 

2005; Hamilton et al., 2005; Sato et al., 2007). Average carbon oxidation states from 668 

Kroll et al. (2011) and functionalization slopes from Heald et al. (2010) are shown for 669 

reference. 670 
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